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Abstract 

LIsing a general method [C. Moeglin, M.-F. Vign~ras, J.-L. Waldspurger. Correspondances de 
Howe sur un Corps p-adique, Lecture Notes in Mathematics. Vol. 1291. Springer. Berlin, 19871 
we derive a complete list of conjugacy classes of reductive Howe dual pairs of groups of isometrics 
of real, complex, and quaternionic Hermitian spaces. Moreover, we establish the natural partial 
ordering on the set of reductive Howe dual pairs which is defined by inclusion modulo con.iugacy. 
As an application, we determine the singularity structure of the orbit space of a pure SIJ(n) ga.ugc 
theory over space-time S "~. © 1999 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

The notion of a reductive dual pair of subgroups of a symplectic group has been intro- 

duced in the late 1970s by Howe [5] in order to establish a duality relation (which is now 

called H o w e  correspondence) between representations of different classical Lie groups. 

It was this relation, rather than the reductive dual pairs themselves, which has attracted 

a lot of interest and found many applications. Since Howe correspondence is beyond thc 

scope of this paper, for the reader interested in details we give a few references. There 

are, at first, Howe's articles [5-7] which develop the relevant ideas very clearly. Then in 
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[31 some examples are discussed explicitly. More detailed expositions one may find, for 

instance, in [12,13,16] (though [12] actually addresses the case of  p-adic groups). Ap- 

plications to problems in theoretical physics can be found, for example, in [6,11]. Both 

these papers, as well as [16], provide, in addition, excellent reference resources for further 

reading. 

Our interest in reductive Howe dual pairs, on the other hand, originates from gauge theory. 

Let us consider a pure gauge theory, defined on a principal bundle over a compact space- 

time, with structure group G. The physical degrees of freedom of the theory are contained 

in the orbit space j ~  of the action of  the gauge group on the space of gauge potentials. 

So in order to get a deeper insight into the theory, and especially into its quantization, it is 

necessary to analyze the topological and geometrical structure of  .A/[. For non-Abelian G 

it is clear that j ~ ,  in general, will not be a smooth manifold. However, as was shown in 

[8,91, , ~  is a stratified manifold, i.e. a manifold with singularities which themselves are 

smooth manifolds again. Moreover, the information about which singularities may occur 

and how they are patched together is encoded in the partially ordered set of orbit types of  

the gauge group action (or some derived action, see Section 9). Now, the determination 

of  this set, which may be viewed as a first step towards a detailed study of the structure 

of  e~,  presupposes knowledge of the reductive Howe dual pairs of  the structure group 

G. 
To our knowledge, the classification of reductive Howe dual pairs has been treated 

explicitly in the literature only for: 

(a) symplectic groups, as a special case of  groups of  isometries of  Hermitian spaces. Here 

one uses tensor product decompositions of  the symplectic form (see, for instance, 

[5,12,131) and 

(b) complex semisimple Lie algebras, using the calculus of  roots (see the comprehensive 

article [14]). 

Both in setup (a) and (b) there have been obtained only partial results on the natural partial 

ordering of reductive Howe dual pairs (see [10] for (a) and [141 for (b)). So in the present 

paper we aim to give, in a setup similar to (a), a detailed and self-contained exposition 

of  the theory of  reductive Howe dual pairs of groups of isometries of real, complex, and 

quaternionic Hermitian spaces (these groups are listed in Table 1), primarily addressed 

to the non-specialist. The method we use is taken from [12], Chapter I. We only slightly 

reformulate it in order to avoid involved tensor products. 

The paper is organized as follows: In Section 2 we give the basic definitions and intro- 

duce the notion of an irreducible Howe dual pair. As it comes out there are two types of  
irreducibility. In Section 3 we discuss, as a prerequisite, the case of  general linear algebras. 

Type 1 and type 2 pairs are then classified in Sections 4 and 5, respectively. The results are 

displayed in Table 4. Section 6 establishes the partial ordering of reductive Howe dual pairs. 

In Section 7 we discuss some simple examples in detail. As a minor remark, in Section 8 
we note that knowledge of  the partial ordering provides, in particular, a classification of  
Kudla's seesaw pairs [10]. Finally, in Section 9 we discuss, by the example of SU(n), how 
one can use the results obtained to determine the singularity structure of the orbit space of 
a pure gauge theory over space-time S 4. 
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2. Basic definitions 

285 

2.1. Reductive Howe dual pairs" 

Let G denote a group. A Howe dualpair  in G is an ordered pair of subgroups ( H~. H2) 

obeying 

C~;(HI) = H2. Cc;(H2) = Hi. 

Here C~; means the centralizer in G. The constituents Hi and H2 are called Howe subgroups. 

Equivalently, a Howe subgroup is characterized by the property 

C~; (C~;(H)) = H. 

The identification of  H with the pair (H, C(;(H))  yields a I : 1-relation between Howe 

subgroups and Howe dual pairs. 

Any group G possesses the trivial dual pair (C(G) .  G). A non-trivial pair is, for example. 

(SO(2), SO(2)) in the real orthogonal group 0(2) .  

Let (HI, H2) and (D~, D2) be Howe dual pairs in G. Clearly, if Hi and DI are conjugate 

in G then so are H2 and D2. Hence conjugacy defines an equivalence relation in the set of 

Howe dual pairs of  G. Now assume that G is a linear Lie group acting on a vector space V. 

Then a Howe dual pair (Hi,  H2) is called reductive iff the induced representations of both 

Hi and H2 on V are completely reducible. Let 7-/(G) denote the set of conjugacy classes of 

reductive Howe dual pairs of G. 7-/(G) carries a natural partial ordering: conjugacy classes 

o~,/3 6 7-/(G) obey e _< /3 iff there are representatives (HI, H2) of ot and (Di,  D~_) of/~ 

such that HI c DI (then H2 _~ D2). 
The notion of reductive Howe dual pair as well as the relations of equivalence and partial 

ordering extend in an obvious way to algebras. 

2.2. Hermitian vector spaces 

Let [K be an involutive field. Denote the involution by x and the center of IK by ~ ' .  We 

restrict our attention to ~ (real numbers with identical involution), C i and C, (complex 

numbers with identical involution and conjugation, respectively), and H (quaternions with 

conjugation). A Hermitian metric of dimension n over [E is a matrix 1 6 GL(n. ~)  for 

which there exists e ~ [E' such that 

/ :  = ~:I. 

Here ":', means transposition of matrix and conjugation of  entries by x. The factor r will be 

referred to as flip factor of 1. It obeys 

K(e)e = I. 

Hermitian metrics I ,  J over ~ are isometric iff (i) they have the same dimension n and 

(ii) there exists T 6 GL(n, [E) such that 

J = T ' I T .  
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They are simUar iff there exists T 6 GL(n, K) and fl 6 ~ '  such that 

J = l iT+IT.  

Any n-dimensional Hermitian metric I over E defines an involution A w-~ A / on the 

associative algebra gl(n, k )  by 

A / : =  l - l A ' l .  1} 

By means of this involution the unitao' group of I is defined as 

U:~:(1) :=  {A E gl(n, ~)  : A I A  = 1}. 

One sees that U~(I )  consists exactly of  the self-isometries of  1. Moreover, Hermitian 

metrics (over one and the same involutive field) are similar iff their unitary groups are 

isomorphic. 

We remark that there is a l:l-relation between n-dimensional Hermitian metrics I over 

and Hermitian forms / on the right K-vector space ~'~. It is given by 

l ( x ,  y) = ~ tc(xj)ljkyk V x, y 6 K". (2) 
j , / ,=l 

The notions of isometry and similarity of  Hermitian metrics originate, of  course, from the 

geometric ones deft ned for Hermitian torms. We shall refer to the pair ([K". I)  as a Hermitian 

space over ~. Finally, a Hermitian subspace of (K", I)  is a subspace V of [~'~ for which 

the restriction il v is non-degenerate. 

In order to classify Hermitian metrics up to isometry (resp. similarity) one occasionally 

needs, besides dimension n and flip factor e, the signature s (resp. its modulus) as a third 

invariant. Recall that it is defined, tbr metrics which have real eigenvalues, as the number 

of positive minus the number of  negative eigenvalues. 

Table 1 lists the isometry and similarity classes of  Hermitian metrics over ~ = ~, C I. C,., 

H, together with the corresponding unitary groups (cf., for instance, [12, Section 1.1 1- 

1.15]). Note that in case ~ = C, the flip factor e is an invariant w.r.t, isometries but not 
w.r.t, similarity transformations. 

We can now formulate the following problem: 

Problem. Calculate "H(Ui,~(I)) Ibr the unitary groups listed in Table 1. 

2.3. Irreducibility 

Assume that we are given a unitary representation of  a group G on a Hermitian space 

(k" ,  I).  Since a G-invariant subspace V c__ ~"  need not be Hermitian there are two notions 
of  irreducibility: one may require either 

(A) There is no G-invariant Hermitian sub,space ( irreducibili~. ' in the categor). ' o f  Hermitian 
spaces over fl(), or 
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Table 1 
Real, complex, and quaternionic Hermitian spaces lind their unitary groups (the numbers p and q in the last 
column are defined as p = / (n + s) and q = / (n -- s)) 

Iff,  Dimension Isometry classes Similarity classes Llnitary gr¢~up 
/,~ ~; g-" [ '¢ 

n E [~ +1 n , n - - 2  . . . . .  --n q.l u . n - - 2  . . . .  p_ 0 O ( p , q )  
2n. ,'1 E ~q - 1 -- I - Sp(,'/. U-;~! 

CI ;1 E ~d +1 - +1 - .(.)(n..L) 
2n. n E [~ --I -- • 1 - Sp~,'I. ( 1 

C~ ii E I~J U(I)  n .n  - 2 . . . . .  - n  - u .n  - 2 . . . .  > 0 U(p .q )  

[]-0 .,i ,E r:d +1 n. n - 2 . . . . .  - n  + I ,'1. n - 2 . . . .  >_ 0 Splp. ,..i I 
,'1 E ~'~l - 1  - • 1 - ()'q,'l) 

(B )  There  is no G - i n v a r i a n t  s u b , w a c e  at  al l  (irreducibili~." in the ca t egory  o f  vec tor  Sluue,s 

o v e r  ~ ) .  

O b v i o u s l y ,  (B )  i m p l i e s  (A) .  M o r e o v e r ,  it" / h a s  s i g n a t u r e  0 (i .e.  if  t he  f o r m  d e f i n e d  by  / 

ts a s c a l a r  p r o d u c t ) ,  t he  c o n d i t i o n s  a re  e q u i v a l e n t .  

W e  sha l l  cal l  a u n i t a r y  r e p r e s e n t a t i o n  i r reduc ib le  i f f  it sa t i s f ies  c o n d i t i o n  (A  I. E v i d e n t l y ,  

w i t h  th i s  d e f i n i t i o n  any  f in i te  d i m e n s i o n a l  u n i t a r y  r e p r e s e n t a t i o n  o f  G is c o m p l e t e l y  re- 

duc ib l e .  A n  i r r e d u c i b l e  u n i t a r y  r e p r e s e n t a t i o n  o f  G w e  shal l  cal l  type 1 i f f  it sa t i s l i e s  con -  

d i t i o n  (B) ,  a n d  o 'pe  2 i f f  not ,  ( T h i s  c o i n c i d e s  w i t h  the  t e r m i n o l o g y  o f  H o w e  [6].)  F ina l ly ,  

o n e  c a r r i e s  o v e r  t h e s e  n o t i o n s  to  H o w e  dua l  pa i r s  in U ?  (1) :  Ca l l  ( H t ,  H2)  i r r e d u c i b l e  (or" 

t ypes  1 a n d  2) i ff  the  i n d u c e d  u n i t a r y  r e p r e s e n t a t i o n  o f  the  s u b g r o u p  HI H2 o f  U ( l ~ on  

( ~ " .  I )  is i r r e d u c i b l e  ( o f  c o r r e s p o n d i n g  type) .  I r r e d u c i b l e  r e d u c t i v e  H o w e  dua l  pa i r s  wi l l  

be  a b b r e v i a t e d  b y  I R H D P .  

In a s i m i l a r  w a y  o n e  d e f i n e s  i r r e d u c i b l e  H o w e  dua l  pa i r s  in G L ( n ,  0~) a n d  g l ( n .  ~ I. S i n c e  

he re  the  c o r r e s p o n d i n g  r e p r e s e n t a t i o n s  are  no t  u n i t a r y  o n e  ha s  i r r e d u c i b i l i t y  in the  usua l  

s ense .  

T h e  l b l l o w i n g  l e m m a  s t a t e s  tha t  it su f f i ces  to c l a s s i f y  I R H D P .  

L e m m a  ! .  Let  1 be a me t r i c  o f  d i m e n s i o n  n over  ~ .  Le t  

t 

(OC'. I) = ~ ( V  i, I i ) (3) 

i=l 

be a H e r m i t i a n  d e c o m p o s i t i o n  a n d  let ( H i , H~ ) be  I R H D P  in Ut,:( l i ), i = I . . . . .  r. Then  

(HI  I x . . .  x H I ,  H~ × . . .  × H ; )  

is a reduc t ive  H o w e  d u a l  p a i r  in U ~  ( I ). Converse ly .  any  reduc t ive  H o w e  dua l  p a i r  o f U :  ( / ) 

is o f  this fi~rm. 

P r o o f  Let  a H e r m i t i a n  d e c o m p o s i t i o n  (3)  be  g iven .  W i t h o u t  loss  o f  g e n e r a l i t y  a s s u m e  

r = 2 a n d  w r i t e  o p e r a t o r s  T ~ g l ( n .  IE) as  (2 x 2 ) - m a t r i c e s  w.r.t, th i s  d e c o m p o s i t i o n .  O n e  
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only has to check that the centralizer of Hi i x H~ is contained in Hd x H 2. So assume that 
T E U~( / )  commutes with Hi I x H 2. Then, for any A i E H i, 

[ ( A  t 0 ) ( T l l  T I 2 ) ]  ( [AI ,T l l l  A I T I 2 - T I 2 A 2 ) = O .  
0 A 2 ' T21 T22 = A2T21 - T21AI [A 2, T221 

Since H i always contains -}-1 W, one  may put Al = lv~ and A2 = - - Iv2 .  It follows that 
T i 2 = ~ l  = 0 ,  a n d T ~  H~ x H~. 

Conversely, let (Hi,  H2) be a reductive Howe dual pair in U~ (I).  By complete reducibility 
of unitary representations, there is a decomposition of (~" ,  I) into a direct orthogonal sum 
of HjH2-irreducible Hermitian subspaces (V i, I i ) .  Put H! := H/lv, ,  j = 1,2. Then J 

(H i, H~)_ are IRHDP in U:~(I i) and Hj = H i; x . . .  x Hf , j = 1,2. [] 

As for the equivalence relation, it is clear that reductive Howe dual pairs are conjugate 
in U~( / )  iff 
(i) the corresponding irreducible orthogonal decompositions of (X", I) are isomorphic, 

(ii) the irreducible factors are equivalent in the respective subgroups U~(] i ) .  
The classification of IRHDP of types I and 2 will be obtained in different ways. As a 

prerequisite for both though it is necessary to study the irreducible Howe dual pairs of the 
algebra gl(n, ~)  first. 

3. The irreducible Howe dual pairs of gi(n, ~) 

Before stating the result we shall introduce the notion of G-dual division algebras. Let 
ni be a division algebra over I~' (i.e. an algebra the elements of which are either invertible 
or zero). As is well known, there are the following possibilities: kl = R, C, H for ~ = 
or I]-fl, and 1-j = C for if( = C. Put 

II := 1- I U~. 

Since either 1-1 _c O~ or ~-I D G, 1- is a field. Moreover, 0_ is the unique simple (1-1, I~)- 
bimodule. Put 

n2 := End~ , .~ (L) .  (4) 

By Schur's lemma, 1-2 is also a division algebra over IK'. We shall say that 1-2 is G-dual to 
1-1. (In order to justify the name 'dual' note that, since simple subalgebras are always Howe 
[15, Section III.4], 0-1 and 11_2 can be interchanged in (4).) By definition, 1-1 and 1-2 have the 
center in common: 

1-'~ = 1-~ cn 1-2 = IL'. 

The values of 1-2 and 1- for given 0_ l are displayed in Table 2. 
Here H ~ denotes the field opposite to H, with multiplication ~ o fl := flot. The left action 

of  or EH ' - ' on f l  E H i s g i v e n b y ~ o f l .  
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Table 2 
Division algebras [1-1 over K', their ~-duals ]-2, and their simple ([1-1, ~)-bimodules ]- 
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R C YC 

n.~ R C H C R 
IL_~ [~ C H ~ C H 
]_ R C H C H 

T h e o r e m  1 [ i 2]. Let [K = R, C, H and let n be a positive integer. 

(a) Assume that the following data are given: 
(i) A division algebra U-I over [K'. Let n_ 2 denote its [K-dual and put 0- :=  ~l O ~.  

(ii) Positive integers Ih. 12 such that 

Ill2 dim~(ll  ) = n. 

Define imbeddings ~bi : gift / ,  Li) ~ gl(l l l2,  L), A i w-~ dpi(A i ) by 

I ln,  ) A Iii ln,  . - .  A I ,  I _ 

q~l(A I) :=  ".. • , 

\ a),,li,,~ . ' .  A),,n l,,z 

I : OA2 
ck2(A 2) :=  

(5) 

(6) 

Then 4~(gl(ll, [ l i d  and 4~(g1(12, [1-2)) constitute an irreducible Howe dual pair m 

gl(n,  [K). 

(b) Any irreducible Howe dual pair of  gl(n, [K) has this form. 
(ct Irreducible Howe dual pairs of  gl(n.  [K) are equivalent iff their first (resp. second) 

constituents are isomorphic. 

R e m a r k s .  

1. In (a) ,  the e lements  of  dpi(gl(li. []-i )) act as I1 i -matr ices  on U ~t-~. By condit ion OiL U ~/." 
and IK" are i somorphic  over  [K. So in order to obtain the corresponding [K-matrices 
acting on [Kn i.e. to realize q~i (gl(l/,  [l-i)) as subalgebras  of  gl(n,  [~), one has to exploit  a 
part icular  IK-isomorphism IlJ d2 ~ [K". Assert ion (c) ensures that one may  forget  about  

this i somorph ism if one is interested in equivalence classes only. 
2. The  role of~0t and 4~2 is symmet r ic  because  it m a y  be interchanged by a ~ - a u t o m o r p h i s m  

of  l t~t: commut ing  with B-I and n2. 
3. By  (b), any irreducible H o w e  dual pair  o f  gl(n,  IK) is reductive.  
4. The  theorem traces back  to Weyl ' s  double  commutan t  theorem [15, Sect ion III.41• It 

applies also to general  linear groups if one replaces gl by GL. 

Proof (cf. [12, Section I. 181) (a) Choose  a [K-isomorphism n_ t'/2 --+ [Kn to identify gl(n,  [K) 
with End~.(D_td2). Obviously ,  $l (gl( l j ,  ~-I )) and 4,2(gi(12, n-2)) commute .  In order to show 
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that they centralize each other in End~(QJ d-" ), assume that T • End~(0_ hI2) commutes, for 
example, with Ct (gl(lj, D_~)). Then T = diag(S . . . . .  S) (It blocks) where S is a ~-linear 
endomorphism of ~J-" commuting with 11_~. Hence S • gl(12, ~-2), and T • ¢2(g1(12, ]-2)). 

(b) Let (11~, 1~2) be an irreducible Howe dual pair in gl(n, ~) .  Decompose ~"  into [}2- 
invariant subspaces. Since these subspaces are permuted by I~, they are all isomorphic and 
the decomposition is 

~ " =  W ~ (7) 

for some b2-irreducible subspace W and positive integer Ii. Define 

Ill := CEnd.,:(W)(~2IW). (8) 

By ~ '  _ [L' l , fl-I is an algebra over ~ ' .  By Schur's lemma, it is a division algebra. Denote 
the I~-dual division algebra by n_2 and put 0_ := n-i tO ~. Since fl_ is the unique simple (n-t, ~) -  
bimodule, W is isomorphic, as such bimodule, to fl_t2 for some positive integer 12. Then K '~ 
is isomorphic, over ~,  to n_ hte. Thus we have constructed data (i) and (ii). It remains to 
check 

~i = ~ i ( g l ( l i ,  Li)) (9) 

for i = I, 2. Since b2 is a Howe subalgebra, (8) implies that b21 w centralizes 0_ I in End~ (W). 
Then ~2 centralizes ~l (gl(ll, 0-1 )) in End~(W I' ), which is identified with gl(n, ~) .  By (a), 
this yields (9) for i = 2 and, in turn, for i = 1. 

(c) One only has to show that isomorphy implies equivalence. So let ([}l, [)2) and (fi, f2) 
be irreducible Howe dual pairs in gl(n, ~)  and assume that hi and f] are isomorphic, as 
algebras over IK'. Then they are isomorphic to some gl(ll, fl-I), with It and 0-1 uniquely 
determined. By (b), there are ~-isomorphisms ~0, ~p : fl_h/,~ __+ ~,,, such that 

{} l=~oo~j (g l ( l l , Ik l ) )ocp  - i  and fl = g r o C t ( g l ( l i , i - i ) ) o ' P  - t .  

It follows that fil and fl are conjugate by ~p o ~p-i • GL(n, ~).  [] 

We remark that, equivalently, Howe dual pairs may be constructed using tensor product 
decompositions 

where the field M depends on ~ and L i. In fact, this is the standard setup used by most authors 
[5,12,13]. Here the imbeddings t~i : gl(li, 0-i) -~ gl(n, ~) ,  A i ~ q)i(A i) are defined by 

Ol(AI)(x ® y) := (Alx)  ® y and t/~2(A2)(x ® y) := x ® (A2y). 

In simple situations, this construction is very obvious. In general, however, we think that 
the viewpoint we have adopted above (and in what follows) is somewhat easier to handle, 
especially for explicit calculations. 
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3.1. Explicit imbeddings 

Let [II be a division algebra over K’, with K-dual [L2 and simple bimodule U_ = IL1 U K, 

and let 11, 12 be positive integers obeying (5). For explicit calculations it is useful to have 

standard K-isomorphisms IL1l’? + KN at hand. We shall choose them as products of K- 

isomorphisms j : L + I-@, where b = dime,; IL. Such an isomorphism induces an imbedding 

gl(m, [L) + gl(bm, W), A H A by requiring 

xj”‘(x) = j’n(A(x)) (10) 

for any x E [L’“, A E gl(m, IL). 

In case O_ = H we put, of course, j = id. For [L = C, K = Iw, put 

j : C + R”, x H (Re(x), Im(x)). (11) 

Then the imbedding gl(m, C) -+ g1(2m, [w), A H A^, is given by replacing the entry A;j 

by the block 

( 

Re(Aij) -Im(Aij) 

1 Im(A;,j) Re(Ai,j) 
(12) 

ForR=W,K=Cwritex~Wasx’+jx2,wherex’,x2~C,andput 

j : w -+ c’,x H (x’,2). (13) 

The imbedding gl(m, E-U) + g1(2m, C), A I-+ 2, then replaces Aij by 

(14) 

Finally, for [L = W, K = R, take the superposition of the two isomorphisms above. Then 

j : l-4 + R”,x I-+ (.&x2,x3, -x4), (15) 

wherex = x’+x2i+x3j+x4k.Moreover,theimbeddinggl(m, E-II) -+ g1(4m, iw). A F+ A? 

replaces Ai,j by 

As a result, the imbeddings 

5 : gl(l;, e;> 4 gl(l1Z2, %) + gl(n, W) 

assign to gl(l; , Li) explicit subalgebras of gl(n, K). 

(16) 

(17) 
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Table 3 
Admissible involutive division algebras 0-1 over ~'  and their K-duals Ez 

ff~ Cl C, H 

L~ R Ci C, H Ci C,. ff~ C, 
0_2 R C1 C, H; Ci C, H C, 

4. Type 1 irreducible reductive Howe dual pairs 

Let ~ denote a field with involution x. To begin with, in analogy to the discussion of  

gl(n, K) we shall introduce the notion of  H-dual involutive division algebras first. Let 0-1 

be a division algebra over 114' with involution Z l. We shall call U-i admissible iff ,kl and 

x coincide on the common subfield n-i n I~. Let Q-2 be the dual of  the underlying division 

algebra of  0_ I w.r.t, the underlying field of  I~. As one immediately realizes, there is a unique 

involution X2 on 0-2 making 0-2 admissible and coinciding with Z t on the common center 

0_' t = g_~,. We shall call 0-2, equipped with X2, the K-dual involutive division algebra of 
n-i. The admissible involutive division algebras over ~ '  and their ~-duals are listed in 

Table 3. 

The classification result is a natural modification of Theorem 1 : 

Theorem 2 [12]. Let K = ~, Cj,  C,., H and let 1 be a Hermitian metric o f  dimension n 

over •. Exclude the case where ~ = H, n = 1 and I has flip factor - 1. 

(a) Assume that the following data are given: 

(i) An admissible involutive division algebra l-i over ~'. Let ~-2 denote its H-dual and 

put O_ = O-i tO ~. 

(ii) Positive integers li, 12 obo'ing (5). 

(iii) Hermitian metrics Ji o f  dimension li over O-i, i = 1,2 such that for  both i = I, 2 

the following two conditions are satisfied: 

q)i(A j' ) = qSi(A) I (18) 

for  any A E gl(li. ~-i) and 

gl(li, fl-i) = spanr<'(U~, (Ji)). (19) 

Then 4)1 (Ua, (JI))  and ~2(Ut 2 (J2)) constitute a ~pe  1 IRHDP o f  U~( l ) .  
(b) Any type 1 IRHDP o f  UK( l)  is o f  this form. 

(c) Type 1 IRHDP are equivalent iff they are isomorphic, as ordered pairs o f  Lie groups. 

Remarks. 
1. The formulation of  Eq. (18) presupposes that a particular H-isomorphism O_ tjl2 ~ ~" 

has been fixed. By (c) one may, as in the case ofgl(n ,  H), forget about this isomorphism 
if one is interested in conjugacy classes of  Howe dual pairs only. 
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2. The type 1 IRHDP of the group O*(1), which are not covered by the theorem, are easily 

determined in a direct way. One may use, for instance, the complex imaginary unit i as 

a metric. 

Proof  (cf. [12, Section 1.18]) Denote U := U~( I ) .  (a) By (19), 4~l(Ua,(Ji)) and 
4)l(gl(/I, n-i )) have the same centralizer in gl(n, ~) .  By Theorem 1 this is 4~2(g1(/2, n-2 ). 

Hence the centralizer of4~j (U~ t (J i ) )  in U is 

U A q~e(gl(12, [1_2)). 

By (18) the intersection is 4~2 (Urn, (J2)). Similarly, 4~1 (U~. (J i ) )  centralizes 4~2 (Ut: (J2)) in 
U so that indeed they constitute a Howe dual pair. Reductivity and type 1 irreducibility are 
evident. 

(b) Let a type 1 IRHDP (H1, H2) be given. Define 

[~1 := Cgh,.?:~(H2), [12 := Cgh,,.-.~(hl). 

One easily verifies 

Hi = h i ( 3 U ,  i =  1,2. ~20) 

The subalgebras fil and 1)2 constitute an irreducible Howe dual pair in gl(n, ~) .  So Theorem 

1 provides division algebras n_l, 0-2, dual w.r.t. ~ (still without involution), and numbers Ii, 

12 such thai 

l~i = ~Pi(gl(li. I-i)). 

(Here a particular identification, over ~ ,  of  Q_/~/2 and ~"  has been fixed.) Since fil and 1~2 are 

invariant under the involution induced by I ,  I defines involutions on gl(/i, [l-i), i = 1.2. As a 
basic fact, these involutions are induced, via ( i ), by involutions ~.i on ki and li-dimensional 
Hermitian metrics Ji over the involutive fields n-i. By construction, J I  and J2 satisfy (I 8~. 
As a consequence, 

Hi = [~i (q U = dpi (Ui(J i ) ) .  

Next check condition (19): Let Yi be a complement (over W) of span~.,(Hi) in hi. By 

U N span~:,(Hi) 2 Hi 

and (20), U does not intersect with Yi. On the other hand, U spans gl(n, ~ )  over ~ '  (cf. 
the remark in [ 12, Section I. 14]; for this argument to hold it is necessary that U # O* ( 1 )). 

Hence Yi = O. 

It remains to show that ]-I and L2 are K-dual: For any ~ 6 0_i N K one has 

g (a) 1,, = (~ 1,, ) 1 = 4~i (~ 16 ) I = ~ i  1" (Of 16 ) J~ ) = @ (~,i (a)  16 ). 

This shows k i ( a )  ~ n-i N ~ ,  and Zi(a)  = x(oe), i = 1,2. Moreover, tbr any ot 6 I1_~ ~ 0-2, 

4)1 (~.~ (a)l/~) = 4~1 ((ul/~)JI)  = q~l (al/~)1 = 4)2(air.,)/ = 4~2()~2(a)1~_, ). 

Since ~_~ ~ 11-2, as the center of ~-i, is invariant under ;~i, this implies ~.~ (u) = ~.2(u). 
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(c) In order to prove assertion (c), we shall proceed in the following way: At first we 

list, for any given I ,  the isomorphism types of  type 1 IRHDP. Then we shall show that 

isomorphy implies conjugacy. 

4.1. Compatible metrics 

Let ~-I, B-2 be ~-dual  involutive fields and let It, 12 be positive integers subject to condition 

(5). In order to identify n_ hC" with ~"  we shall use the isomorphisms defined in (1 l), (13), 

and (15). The corresponding imbeddings gl(lll2.0_) ~ gl(n, ~) ,  A ~ A', are then given 
by (12), (14), and (16), respectively. These provide imbeddings ~i : gl(li, Li) --~ gi(n. ~ )  

by (17). 
Our task is to find the solutions of  Eq. (18). In order to do so we shall take arbitrary 

Hermitian metrics JI, J2 and ask for metrics I over ~ satisfying this equation. Such metrics 

we shall call compatible with the pair JI ,  J2. 

L e m m a  2. Let JI, J2 be Hermitian metrics over 8-I, D-2. o f  dimension II, 12 and with flip 

factor  Et. e2, respectively. Let An denote the n-dimensional alternating diagonal matrix 
diag(l .  - 1 . 1 ,  - 1  . . . .  ). Then the Hermitian metrics over ~ which are compatible with JI 

and J2 are given by 

I I~) = A,,~' I  ( a J I ) ~ 2 ( J 2 ) ,  
1(¢~) = ~'1 (o tJ I )~ '2 (J2) ,  

t where ot E n_ I such that 

ot-13-1(a)eje2 ~ ~ ' .  

if G = ~. n_j = C~, (21) 
otherwise, 

(22) 

Proof Let us introduce the notation 

I 0 : =  A,,. i f ~ = ~ , n _ j  = C I ,  
1o := 1,~, otherwise. 

Clearly, Io is a Hermitian metric over IE. One checks that for any A c gl(li, fl_i), i = 1, 2, 

~.(A+, ) A . ,/,, = qhi(A; , (23) 

where ti means the canonical involution on gl(li, [I-i), and superscript 1o means the involu- 
tion induced by I0 via (1). 

To begin with, assume at first that there is given an ot 6 R_' I satisfying (22). Then 1(,~1, 
defined by (21), is a Hermitian metric over IE: To see this, write 

I,'~) =~,(OtJl)+~2(J2) + I0 = lO~l(OtJl)l°~2(J2) l" 

=/0~1(3.1 (ot)J I )~b2(J2") 

= I0~1 ((~-13-1 (~) t l  e2)ot JI )~2 (J2). 

By (22) the RHS becomes a-13-1 (or)el e21¢,~. 



M. Schmidt/Journal of  Geometry and Physics 29 t 1999) 283-318 295 

Next check that/~,,~ is compat ib le  with J I ,  J2: For  any A 6 g l ( / i .  0-i ), 

(Pi(A d' ) = ~)i( Ji ) - I  f~i( A +' )dfli( Ji ) 

= 4)2 ( J 2 ) - I  ~bl ( o t J I ) - I~b i (A  '' )q~l (otJi Rb2 (J2).  (24) 

Insert 4~i ( A :' ) = 1~- I 4) i ( A ) . - / o  to obtain ~Oi ( A J~ ) = ~bi ( A ) z,,, ,. 

As for the converse assert ion,  assume that 1 is a Hermi t ian  metric over  [K, compat ib le  

with JI ,  J2. Then,  on the one hand. one has (24) with a = 1. On the other hand, 

qbi(A j' ) -=- dpi(A) ! = l -1 h)~pi(A)l"l t i-I  I = I I h)q~i(A':")/~7 1/. 

Thus, I ~ l l q 5 2 ( J 2 ) ~ ( o j ( J i )  - j  commutes  with dpi(gl(li,  ~ i ) )  for both i = 1.2.  Hence it 

equals  4)1 ( a l h )  for some ~ E l_' I . Then I = 1~,~. ,~I 

Now one may  proceed  in the fo l lowing way:  for each combina t ion  of  s imilar i ty  classes  

of  Hermi t ian  metr ics  over  o-t, 000, ( l isted in Table I ) one chooses  a pair  of  representat ives  J I .  

J~ and determines ,  by use of  (21), the s imilar i ty  class of  I,~ ~, for each admiss ib le  value of  

ct. Final ly  one has to check condi t ion  (19). In order  to see this procedure  work ing  we shall 

d iscuss  some examples  in detail .  The comple te  list of  type 1 I R H D P  then is conta ined in 

Table 4 (See also Table 5.) 

In the examples ,  we shall stick to ~ = ~.  The admiss ib le  involutive divis ion a lgebras  0001 

and their  duals  k2 can be read off  f rom Table 3. 

E x a m p l e  1. Let us begin with the most  s imple  case 0-~ = E. Then 0-2 = [R and 1_ = 

0001 ,_J I~ = N. Hence d imens ions  obey 1112 = n and imbeddings  ~i and 4~i coincide.  Though 

any value of  a satisfies (22), running a does  not change the s imilar i ty  class of  I,~ ~. So one 

may put a = 1. Moreover ,  condi t ion  (19) is satisfied for any real Hermit ian  metric.  

We shall derive relat ions be tween the invariants.  If  JI .  J2 have flip factor e l ,  e_, then Icl~ 

has flip factor ~" = ere2- There  are three combina t ions  possible:  In case ~:l = e ,  = 1. both 

JI and J2 have a signature,  say sl and s2. Then 1~ ~ has s ignature s = sl s_,. With  the notat ion 

p =  / 0 1 + s ) ,  q =  / ( n - s ) ,  

pi = I (li + .Vi), qi = I (  I, --. ';i).  = 1 . 2 .  

this yields  the I R H D P  

( O ( p l ,  ql ), O(p2 ,  q2)) in O ( p ,  q) ,  

where 

P = P l P 2  + qJq2,  q = Plq2  + P2q l .  

In case ~l = 1, e2 = -- 1.12 is even and e = - 1, for any signature of  JI .  Hence  there is a 

sequence of  I R H D P  

( O ( p l , q l ) , S P ( ½ 1 2 ,  N ) ) i n S P ( ½ n ,  N) ,  where  n = (Pl  + q l ) 1 2 .  
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Table 4 
IRHDP of  U~ (I)  
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Ut~ (1) Type IRHDP Conditions 

O(p, q) 1 O(pl .  ql) .  O(p2. q2) P = PIP2 + qlq2: q = Plq2 + qlP2 
U ( p l , q l ) .  U(p2,q2) p = 2(pip2 + qlq2); q = 2(Plq2 + qlP2) 
Sp(pl .  ql) .  Sp(p2. q2) p = 4(piP2 + qlq2): q = 4(Plq2 + qlP2) 
Sp(nl .  R). Sp(n2. •) p = q: p = 2nln2 
O(ni .C),O(n2.  C ) p = q :  p = n l n 2 :  n l . n  2 ~- 1 
Sp(n I, C). Sp(n2, C) p = q: p = 4nln2 
O*(nl) .  O*(n2) p = q; p = 2nln2; h i , n 2  # 1 

2 GL(nI . [~) .GL(n2.  R) p = q: p = nln2 
GL(nI .C) ,  GL(n2, C) p = q: p = 2nln2 
GL(nl .  H).GL(n2.  M) p = q; p = 4nln2 

Sp(n. R) I O(p l .  ql ). Sp(n2. R) n = (Pl + ql )t~2 
U(pl .  ql) .  U(p2. q2) n = (Pl + ql)(P2 + q2) 
O(n I ,C) .Sp (n2 .  C) n = 2 n l n 2 "  nl :fi 1 
Sp(pl .ql ) ,O*(n2)  n = 2 ( p l  + q l ) n 2 : n 2  # 1 

2 Same asO(n, n) 

O(n, C) I O(nl ,  C), O(n2, C) n = nln2 
Sp(n I. C). Sp(n2. C) n = 4nln2 

2 GL(nl ,  C). GL(n2. C) n = 2nit.2 

Sp(n. C) 1 O(n I , C). Sp(n2, C) n = n itl2 
2 GL(n l . C). GL(n2, C) n = n ln  2 

U(p,q)  1 U(p l ,q l ) ,  U(p2. q2) p =  piP2 + q l q 2 :  q ~- Plq2 +qlP2  
2 GL(nI ,C) .  GL(n2,C)  p = q: p = n ln  2 

Sp(p, q) 1 O(pl ,  ql ). Sp(p2. q2) P = Pl P2 + qlq2: q ---- Ptq2 + ql P2 
Sp(n I, R). O*(n2) p = q; p = nln2 
U(pl ,q l ) .  U(p2, q2) P = PIP2 + qlq2: q --- Plq2 + q l P 2  

2 GL(n I. R).GL(n2.  H) p = q; p = nln 2 
GL(nl ,  C). GL(n2, C) p = q: p = n ln  2 

O*(n) 1 O(pl .q l ) ,O*(n2)  n = ( p t  + q l ) n 2 : n 2  ~ 1 i fn ¢ 1 
Sp(n 1, R), Sp(p2. q2) n = 2n I (P2 + q2) 
U(p l .q l ) ,U(p2 .q2)  n = ( p l  + q l ) ( p 2 + q 2 )  

2 GL(nl ,  ~).  GL(n2. H) n = 2n in2 
GL(nl .  C), GL(n 2, C) n = 2nln2 

a NOTE. Keep pi >_ qi throughout. 

F ina l ly ,  in c a s e  e I = e2 = - 1, e = 1 and  I I I~ p o s s e s s e s  a s igna tu re .  In  o r d e r  to  ca l cu l a t e  it, 

c h o o s e  fo r  J I ,  J2 the  usua l  s y m p l e c t i c  m a t r i c e s .  O n e  h a l f  o f  the i r  e i g e n v a l u e s  is i, the  o t h e r  

h a l f  is - i .  T h e n  l t l )  ha s  e i g e n v a l u e s  1 and  - 1 ,  w i t h  the  s a m e  mul t ip l i c i ty .  H e n c e  s = 0. 

S o  th is  c o m b i n a t i o n  g i v e s  r i se  to the  I R H D P  

( S p ( l / i ,  R) ,  SP(½12, •)) in O ( p ,  p ) ,  w h e r e  2 p  = Ill2. 

Example 2. N o w  let  us  turn  to  0-1 = C i .  H e r e  0-2 = C l  and  n_ = 0-1 t 0 ~  = C. A s  

a c o n s e q u e n c e ,  d i m e n s i o n s  are  r e l a t ed  by  n ----- 21112. H e r m i t i a n  m e t r i c s  JI and  J2 are  
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classified by their flip factors el, e2, which may take values +1. Moreover, (22) imposes 

no constraint on the factor u. 

Again derive relations between the invariants, lc,,~ has flip factor ~" = el e2. If el = ~2 = 

1 then I~,~1 has flip factor e = 1. In order to calculate the signature s of It,,,. choose, for 

instance. Ji = I I , .  Then 

Ic~ = A,,~l (ul / i )  

is block diagonal, with It 12 blocks 

Re(u) - l m ( u ) ~ .  

- l m ( u )  - R e ( u )  ,] 

Since each block has eigenvalues + ]u I, one obtains s = 0. One sees that also in this example 

does not change the similarity class of  lc~l. (In general, however, it may do.) 

It remains to check condition ( 19): Obviously, O( I, C) = { 1. - 1 } does not span gl( 1. C) = 

C over ~. One convinces oneself that this is the only exception in case [11 = Ci. Thus the 

type 1 IRHDP constructed here is 

(O(/i. C). O(/2. C)) in O(p. p). where p = 1112 and/i  ~- 1. /2 ~ 1 . 

l fe l  = 1 and ~2 = - 1  then E = - 1  and we obtain the IRHDP 

(O(ll. C). SP(½/2, C)) in SP(½n. J~). where 21tl2 = n .  It :A I. 

Finally, if el = e2 = - I  then e = 1, and both/ i  and 12 are even. In order to compute the 

signature s of  I¢,,~, choose for JI,  J2 the usual symplectic metrics and write 

I,,,, = An~l (ul/,)~1 (S,)~2(J2). 

Since A,, ~j (u It,) and ~l (J I  )~2 (J2) commute, s is the product of their signatures. It follows 

that s = 0. The corresponding IRHDP is 

(SP(½1t. C).SP(½12. C))  in O ( p . / , ) .  where l l l 2  = p. 

Example  3. As a last example, consider [1-t = C,. Here [12 = C, and [1 = LI W ~ = C. 

Hence dimensions are subject to n = 2It/2. Moreover, metrics over C,. are classified up to 

similarity by their signature, and not by their flip factor, which may take any complex value 

of modulus 1. So choose decompositions l i  = Pi -t- qi, i = 1.2, and put 

J i  = d iag ( l t , , , - l u , ) ,  i = 1.2. 

By (22) the range of  u is then restricted by the requirement that oe-t~ be real. Up to a real 
factor, which does not change the similarity class of I~,,), there are two solutions: u = 1 

and u = i. 1¢1~ has flip factor e = 1 and signature s = 2sis2,  whereas I i i  I has flip factor 
- 1 (and therefore no further invariant). The corresponding IRHDP are 

(U(pl ,  ql) .  U(p2,  q2)) in O(p,  q). 
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where 

p = 2 ( p ~ p 2 + q ~ q 2 )  

and 
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and q = 2(p~q2 +q~p2)  

( U ( p l , q l ) , U ( p 2 ,  q 2 ) ) i n S P ( ½ n , ~ ) ,  where 2(pl + q ~ ) ( p 2 + q 2 ) = n ,  

respectively. (Note that here the imbeddings of  U(pi,  qi) into gl(n, E) are different, de- 

pending on whether they lead to a Howe subgroup in O(p,  q) or Sp(m. E).) 

4.2. Passage to conjugacy classes 

In this section we shall prove assertion (c) of  Theorem 2, i.e. that isomorphy implies 

equivalence. So let (Hi,  H2) and (DI,  D2) be type 1 IRHDP. By assertion (b), there are 

admissible division algebras LI and ~ l  with K-duals L2 and t~2 and simple bimodules 

n_ = n_t U ~ and ~ = MI U K, metrics Jj ,  J2 and Ki. K2 of  dimension Ii, 12 and mi,  m2, 
and ~-isomorphisms ~0 : D_ t'12 ~ ~" and ~ : ~'~'" '- '  ~ ~n such that 

Hi = ~oi(U:,(Ji)) and Di = ~i(U~.~,(Ki)), i = 1,2. 

respectively. Here the imbeddings ~0i, ~i : gl(li, n-i) --+ gl(n, ~)  are defined by 

~oi(A) = 99oq~i(A) o~0 '1  and ~Pi = 1~" oq~i(A) ~ 1/t-I 

for A ~ gl(li, [l-i), i = 1,2. If the pairs are isomorphic, Li = ~ i ,  li = mi, and Ji and Ki are 

similar, i = 1,2. In fact, J / and  Ki may be chosen isometric, and by possibly modifying ¢ 

one may even assume Ji = Ki ,  i = 1,2. Then ~0i and ~Pi are two representations o f U ~  (Ji). 
Define 

T :=  ~ 0  - i  

T intertwines ~0i and ~Pi. 

Topoi(A)  = ~ i (A)  o T V A E gl(li,[l_i), i = 1,2. (25) 

Hence Di = T H i T  - t  , i = 1, 2, i.e. the pairs are conjugate in GL(n, ~).  Unfortunately, 
in general T is not necessarily unitary w.r.t. 1 : Since ~0i, ~Pi preserve involution, (25) implies 

T I T  o¢oi(A) =~oi(A) o T I T  'CA E gl(li, n-i), i = 1,2. 

It follows that 

T t T = ~0t (/311,) 

for some fl 6 n_' I. Therefore, in order to obtain conjugacy in U~(1),  one has to find S 
gl(n, ~)  normalizing Hi such that T ~ S 6 U~.(1). 
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Obviously, Xj ([3) = [3. From Table 3 one learns that this implies [3 6 D4', except for the 

case D4 = ~ and Li = Ci .  However, in this case there exists V 6 C such that 7 -~ = [3. So 

one may put 

S:=¢pt(f I1/~). 
In any of the other cases one may assume [3 6 IK'. Let us investigate which values 14 ma~ 

take then. To this end, for given involutive field ~ and metric J of dimension m over ~,'0 let 

W ( J )  denote the set of  scalars [3 • ~ '  for which there exists A 6 gl(m. %~) such that 

A / A  = [31 m. 

Determine W ( J )  for the Hermitian spaces, listed in Table 1, by means of the following 

simple criterion: An element [3 c ~ '  belongs to W ( J )  iffthe metrics J and [3 J are isometric. 

(Because in this case there exists A 6 gl(m, ~ )  such that 

[3J = A : J A  = JA'I  A.) 

Then check, using Table 4, that all but two type 1 IRHDP obey 

W(1) c_ ~o~ (W(JI))~02(W(J2)). (26) 

The exceptions are 

(a) (U(p t .  qt),  U(p2, q2)) in Sp(n. ~)  

and 

(b) ( U ( p t , q l ) . U ( p 2 , q 2 ) ) i n O * ( n ) ,  

where (pt + qt ) (p2 + q2) = n for both pairs. 

In case (26) holds one finds operators Si • GL(/i .  Li) satisfying 

S/ 'Si  =[3 i l / , ,  i =  1,2 and [31132=[3. 

So one may put 

S :=  (~0j (Si)~02($2)) - I  . 

For the exceptions (a) and (b) we shall give an S explicitly. Obviously, it is sufficient that S 

satisfies 

SIS  = -1 , , .  (27) 

Choose. in the setup explained in Section 3.1, the following metrics: 

JI = i d i a g ( l p , . - l q t ) .  J2 = diag(lt,_.. -1 , /~) .  I = ~l(JI )~e(J2) .  

Put S : =  A2,, in case (a) and S : =  j l , ,  in case (b). Then S obeys (27), as well as 

S$1( A )S - I = ~, (-~) 

for any A • g l (pj  + ql, C). Since U(p t ,  qt),  if defined by Jl above, is invariant under 

conjugation A ~ A, S normalizes Hj and, consequently, also H2. 
This concludes the proof of  Theorem 2 and the discussion of type 1 IRHDP. E-] 
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5. Type 2 irreducible reduetive Howe dual pairs 

The occurrence of type 2 IRHDP is restricted to the unitary groups of hyperbolic 

Hermit±an spaces. As it comes out, these pairs are closely related to Lagrangian subspaces. 

Let us briefly recall the relevant notions: 

A Hermit±an metric I of dimension n over ~ is called hyperbolic iff ~"  is the direct sum of 

two isotropic subspaces. These subspaces are necessarily maximal isotropic and of the same 

dimension. It follows that a hyperbolic Hermit±an space has even dimension. Generally, a 

maximal isotropic subspace of  a hyperbolic Hermit±an space is called Lagrangian. 

Let X be a Lagrangian subspace and let 

S ( X )  : =  {T E U~:(1) • T X  = X} (28) 

denote its stabilizer in U~: ( I ) .  As a basic fact, restriction to X yields a Lie group isomorphism 

S(X)  ~ GL(X).  In particular, any transformation T 6 GL(X)  possesses a unique unitary 

prolongation T 6 U:.~(I). 

We shall need the following two special properties of  isotropic subspaces: 

L e m m a  3, Let 1 be a Hermit±an metric o f  dimension n over ~ and let X c__ ~"  be an 

isotropic sub.wace. Then 

(a) X ± -  = X. 

(b) ! f  X = X ± then 1 is hyperbolic and X is a l_ztgrangian sub.wace. 

Remarks .  Orthogonal complements are taken in ~'~ and w.r . t . I .  

Proof  Choose a basis {el . . . . .  era} in X. Then there exist f i  6 ~'~, i = 1 . . . . .  m, such 

that 

i (e i ,  f i )  = 3ii and [(J i ,  J)) = O. 

Here i denotes the Hermit±an form defined by 1 via (2). Put Y = span~( f l  . . . . .  fro). Then 

Y is isotropic and X ~ Y is a hyperbolic Hermit±an subspace of K '~. Moreover, 

K '~ = ( X ~ Y ) ~ ( X ~ Y ) - .  

where the sum is orthogonal w.r.t. 1. As a consequence, 

X -  = X @ (X ~ Y)±. (29) 

So if X = X ± then (X @ Y) -  = 0. This proves assertion (b). As for (a), (29) implies 

X z -  = X ± n (X • Y)±- .  By (X ~ Y)±± = X @ Y (as tbr any Hermit±an subspace), the 

intersection equals X. [] 

L e m m a  4. Let ! be a Hermit±an metric o f  dimension n over ~.  / fUr<(/)  possesses a t)'pe 

2 IRHDP (Ht ,  H2) then I is hyperbolic and there exists a Lagrangian subspace invariant 

under Ht H2. 
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Proof By assumption, there is a degenerate Hi H2-invariant subspace Xo C H". Pu! X :=  

X0 71 X~7. X is non-trivial, isotropic, and Hi H2-invariant. Moreover, X c_ X . where X • 

is also invariant. Since the Howe dual pair (H~, He) is reductive, one finds an invariant 

subspace W C X ± such that X -  = X ff~ W. 

W is non-degenerate: To see this, let u, E W. If u, E W- then u, E X -± .  Lemma 3(a~ 

implies w E X, hence w = O. 

Thus, irreducibility of  (Hi,  H2) implies W = {0} and, consequently, X = X--. Then, by 

Lemma 3(b), / is hyperbolic and X is a Lagrangian subspace. ~ 

Theorem 3 [I 2]. Let I be a hyperbolic Hermitian metric of  dimension n over H. 

(a) Let X c_ H 'z be a Lagrangian subspace and let ( H I , H, ) be an irreducible Howe dual 

pair in GL(X). Then the unita O" prolongations Hi of  H . i = I. 2, constitute a t.~pe 2 

IRHDP ~'U>.(I) .  

(b) Any ~.'pe 2 IRHDP of  U~. (1) is o f  this form. 

(c) Type 2 IRHDP are equivalent ilf they are isomorphic. 

Proof (cf. [12, Section 1.18]) Again denote the stabilizer (28) of X in U; , ( I )  by S(XI .  

(a) Given X one finds a complementary Lagrangian subspace Y C H" with SIX) = 

S(Y).  Write operators T E gl(n, ~)  as (2 x 2)-block matrices w.r.t, the decomposition 

H" = X • Y. Put Ao :=  diag(21x, ½1 x). Ao is in the center of S(X), hence Ao E Ill A He. 

Now assume that there is given T E Ut<(1) commuting with HI. Then, in particular, 

( ' )  0 - ~ T I 2  
IT, Ao] = ~ - = O. 

~ 0 

Thus T E S(X), and TIx ~ H-;. Since unitary prolongation is unique, 7" E He. So H~ 

centralizes H] (and vice versa by the same argument). 

(b) Let (HI,  H2) be a type 2 IRHDP of U:<(/). By Lemma 4 there is a Hi H,-im'ariant 

Lagrangian subspace X. Since Hi and He are contained in S(X) ,  (Hi, H2) is a Howe dual 

pair in S(X) .  So restriction to X yields a Howe dual pair (obviously irreducible) in GL( X ). 

with unitary prolongation (HI, H2). 

(c) As usual, one only has to show that isomorphy implies equivalence. As a basic tact, 

any two Lagrangian subspaces are conjugate w.r.t, the action of U k (I).  Hence for any two 

type 2 IRHDP of U?~(1) one finds equivalent pairs leaving invariant a given Lagrangian 

subspace X. Now if these pairs are isomorphic then, by Theorem I, their restrictions to X 

are equivalent in GL(X). Hence the pairs are equivalent in S( X ). E~ 

To complete the classification it suffices to list the hyperbolic ones among the Hermitian 
spaces over H = ~, C ], C,., H. As is well known, these are the ones which have either zero 

signature, or no signature and even dimension. Their unitary groups are: O(n, n ), Sp(n. ~), 
O(2n, C), Sp(n, C), U(n, n), SpOt, n), O*(2n), where n is a positive integer. 

This concludes the classification of IRHDP of the classical Lie groups. The results are 

listed in Table 4. 
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6. The natural partial ordering of reductive Howe dual pairs 

Throughout this section, let 1 be a Hermitian metric of dimension n over IK. In order to 

establish the natural partial ordering relation on 7-/(U[<(1)) we shall determine the direct 

successors of each element. 
A remark on terminology: when talking about Howe dual pairs in the following we shall 

always mean conjugacy classes. Moreover, if HI, H2, H3 are subgroups of U~<(I) then we 

shall say that H2 separates Hi and H3 iff Hi C H2 C H3 (proper inclusion). 
To begin with, we state that it suffices to know the direct successors of IRHDP: 

Lemma 5. Let (HI, H2) be a reductive Howe dual pair in U~(/) .  Then those direct 

successors of (HI, H2 ) which have the same or a greater number of irreducible factors are 
obtained from (HI, H2) by replacing precisely one of the irreducible factors by an), one of 

its direct successors. 

Proof. The reductive Howe dual pairs produced in this way are obviously direct succes- 

sors of (Hi, H2). Conversely, let (Dr, D2) be a direct successor of (Hi, H2). Choose 
representatives (denoted by the same letters) s.t. Ht ___ DI. Consider the subgroup L of 

l W i" U~(/ )  generated by H2 and D i. Decompose (K '~, I) = ~)i= i( I i) into L-irreducible 
Hermitian subspaces. Since this decomposition is coarser than both the Hi H2-irreducible 

and the Di D2-irreducible one, (Hi Iw,, H2lw, ) and (Di Iw~, D21w,) are Howe dual pairs 
in Uk( l i ) ,  and 

( H i , H 2 ) = ( n l l w ~  x . . .  × nllwz,n2lw~ x . . . ×  n2lwt), 
(Di, D2) = (Dllw~ x . . .  × Dtlw/, D2lw~ x --- x D2lwz). 

Now if Hi Iw~ ~ Dt Iw, lbr more than one index i, say for i = 1,2, then 

D~lwJ x ntlw'- x . . .  x Hllw I 

is a Howe subgroup of U~(I )  separating Ht and Di. Thus Hi Iw, ~ Dt Iw, for precisely 
one index i = k. It is clear that then (Dilw~, D21w~) has to be a direct successor of 

(Hi Iw~, nilw~) in U~(/k).  
It remains to show that (Hi [wk, H2lw~) is an irreducible factor of (Hi, H2), i.e. that 

Ht H2 acts irreducibly on W k. In order to see that, consider the subgroup Hi D2 of U:<(/) 
and decompose 

! 

(W k, I k) = ~ ( W  ki, I ~) (30) 

/ = 1  

into Hi D2-irreducible Hermitian subspaces. This decomposition is finer than both the de- 
compositions of (W k, / k) into Hi H2- and into Dt D2-irreducible subspaces. Now if both 
Hj H2 and DI D2 would act reducibly on (W k, I k) then it was properly finer (otherwise 

(W ~, / k) was not L-irreducible). Then Ht Iwk and Dt Iw~ would be separated by the Howe 
subgroup Hi [w~' x • • - x Hi [w~, of Uy~ (I k ). Thus, at least one of the groups Hi H2 or D i D2 
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acts irreducibly on (W k, I t ) .  By the assumption on the number of irreducible factors, this 

is Hi H2. E 

Note that if (D j, D2) is a direct successor of (Hi,  H2) with less irreducible factors, then 

(H2, HI) is a direct successor of (D2. Di) with more irreducible factors, hence meets the 
assumption of the lemma. 

We proceed with the determination of the direct successors of IRHDP. Thereby wc shall 

discuss the following cases separately, in the following order: reducible direct successors, 

type 2 irreducible direct successors of type 2 1RHDP, type 1 irreducible direct succcssors 

of type 1 IRHDP, and type 2 irreducible direct successors of type I IRHDP. 

6.1. Reducible direct successors of  lRHDP 

Proposit ion 1. Let (Hr. H2) be an IRHDP of  U~(1). Assume that 

( ~ " , I ) = ( V  t . I  t ) ~ ( V  2,12) 

is a n  H I -invariant Hermitian decomposition. Then 

(Ol.  02) = (HIIvL x Hjlv~_,Cl!:~lt~(Htlvt) x ( ' t  . tz~(Htiv "-)) (31) 

is a reducible direct successor of  (HI. H2). Conversel3; any reducible direct successor ~[ 

(HI, H2) is o f  thisJk~rm. 

Remarks .  We shall say that the direct successor (Di,  D2) of (Ht,  H2) is obtained by 

splitting, and that the direct successor (H2, Ht ) of ( D2, D i ) is obtained by im,etwe splitting. 

Proof. Assume at first that a Hermitian decomposition is given. One straightforwardly 

checks that (31) is a reductive Howe dual pair in U,c(1). Clearly, Hj C Di. Assume that 

(TI, T2) is a Howe dual pair obeying Ht c_C_ T t c  Dr. Then restriction to V i of this relation 

yields Tl Iv, = Ht I v,, i = 1,2. Hence either (Tt, ~ ) = ( Hi, H2 ) (if (Tt, T2) is irreducible) 

or (Ti, 7~) = (Dt ,  De) (if it is reducible). 

Conversely, let (Tt, T2) be a reducible direct successor of (Hi,  H2). Then there is a 

Tt T2-invariant (hence, in particular, Hi-invariant) Hermitian decomposition ([K",/) = 

( V t, I I ) ~ ( V 2 12). Let (Di,  D2) denote the direct successor (31 ) of  ( Ht, He ) defined bv 

this decomposition. By (Tt, ~ )  = (TI ] ~,, i x Ti [ v-~. "I~ I v' x ~ Iv-~ ), D i commutes with 7\. 

Hence Tt c_ DI. It follows Ti = Di and, in turn, ~ = D 2 .  ~--~ 

Example 4. Consider the IRHDP (O(n), O(m)) in O(nm). Here any decomposition is 

Hermitian. Since the dimension of  O(n)-invariant subspaces is a multiple of n, possible 

decompositions "are ~"'" = ~,,,,,~ ~ ~,,,,,2 where m l + m2 = m. The corresponding direct 

successors are 

(()(n) x O(n). O(ml)  x O(m2)}. 
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6.2. Type 2 irreducible direct successors of t),pe 2 IRHDP 

Proposit ion 2. Assume that ! is hyperbolic and let (Ht,  H2) be a ~.'pe 2 IRHDP in U~(I  ). 

Then (HI,  H2) has the following direct t3'pe 2 irreducible successors (DI,  D2): 

HI D l Condition 

GL(n~, R) GL(nl ,  C) n2 even 

GL(n t, C) GL(nt ,  [~) n2 even 

GL(2n I, ~) - 

GL(n I, H) GL(2n 1, C) - 

(32) 

R e m a r k s .  

1. Since a type 2 IRHDP is uniquely determined by the isomorphism type of each of  its 

constituents, in Table (32) it suffices to list the first one. 

2. As imbeddings GL(I], C) ___ GL(2I], ~) and GL(li,  H) c_ GL(2I~, C) one may choose, 

for instance, (12) and (14), respectively. 

3. One sees that in case IK = Ct or C, type 2 IRHDP do not have type 2 irreducible direct 

successors. 

4. The proposition provides, in particular, the irreducible direct successors of  irreducible 

Howe dual pairs in GL(m, ~) ,  where 2m = n. 

Proof. To begin with, assume that (Dr, D2) is one of  the pairs in Table (32). Choose a 

representative, denoted by the same letters. HI, as a subgroup of  Dr, generates a Howe 

subgroup S of  U•(I). S is either a unitary or a general linear group or a product thereof. 

Since there is no such group separating HI and D], S = Hi. Thus Hi, imbedded into 

U z ( / )  in this way, is Howe, and (Di ,  D2) is a direct successor of  the Howe dual pair 

(Hi, Ct:,.~l)(Ht)). By Remark 1, Cu~,ll}(Hi) = H2. 

Now turn to the converse assertion. Let ( Hi, He ) = (GL (l l, [1_ t ), GL(12, [1.2)) and ( Dr, D2) 

= (GL(mt,  [~l), GL(m2, 1~2)) be type 2 IRHDP in U~(I ) .  Assume that (D[, D2) is a 

direct successor of  (HI,  He). Then HI acts, as a subgroup of  Di,  on M~'~. By (7), this 

representation decomposes, over the center K' of  ~ ,  into a number of  fundamental irreps 

of H i :  

On the other hand, this representation is irreducible over I~]: otherwise there was an H]- 

invariant decomposition [~'~'J = X ~ Y over [~l, and GL(X) x GL(Y) would generate, as 

a subgroup of  Dl, a Howe subgroup of  UK(I)  separating Ht and Di. 
Thus, irreducibility implies: 

- IfC_l ___ 1~] thena  = dim~ [~t. Hencein th i scaseml  = I t .  

- l f[~] ___ ]-i then a = 1, since irreducibility over I~l implies irreducibility over Ill. So in 
this case m t = bit, where b = dimF~r ]-t. 
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As an immediate consequence, 0-i ~ ~dl. Moreover, it is obvious that in the field ex- 

tensions ~-I C ~ l  or MI C ~-I, respectively, the situation R _c H cannot occur. So Di is 
contained in Table (32). ~-:: 

6.3. Type 1 irreducible direct successors" o f  type 1 IRHDP 

In this section, for brevity of notation we shall call the passage from R to Ci or C,,  and 
from C, to ~ a minimal involutivefield extension. 

Proposition 3. Let (Hi ,  H2) : (U,~. (JI ) ,  UL: (J2)) and (Di ,  D2) = (Uv.  (Ki) ,  U!:,L, (K2)) 
be IRHDP of  type I in U ~ (I). Then ( D I, D2) is a direct successor o f  (HI, H2 ) iff either 

(a) I~ I is a minimal involutive field extension of  0_1 and 

/I = m l ,  KI : JI .  

K2, ~ = R ,  M2 =fiCI, 
J 2 =  At_,K2, ~ = R ,  M2 = C i ,  

K2, ~ = H ] ,  

o r  

(b) ~-I is a minimal involutive field extension o f ~ i  and 

m = 2 l l ,  {z. 
KI = Aml ~l, 

[11 ~ CI,  J~ = / K2.A ~ = ~" 
{l-i = C I .  - [ K2, ~ = H .  

Remarks. 
1 

. 

. 

Depending on the values of ~i and • i ,  i = 1,2, the matrices K'2 and ~ are the images 

of  K2 and JI under the imbeddings (12) or (14), respectively. 

We shall say that (Di ,  D2) arises from (HI ,  H2) by involutivefield extension (case (a)) 
or restriction (case (b)), respectively. 
Note that the relations between metrics are understood modulo similarity. So in order to 

obtain all solutions KI,  K2 one has to run Jr,  J2 through the respective similarity class, 

with the constraint that (DI,  D2) is a Howe dual pair in U~(1).  
4. Similar to type 2, for ~ = C there are no type 1 irreducible direct successors of type 1 

1RHDP. 

Proof To begin with, we shall show that any type 1 direct successor of (Hi ,  H2) is subject 

to either condition (a) or (b). E 

L e m m a  6. Assume that (DI ,  D2) is a direct successor o f ( H i ,  H2). Then either 1-1 C WOi 

and ll = mr, o r M l  C 0-1 and ml = bll. where b = dim,~ I~1. 

Ptvof  The proof goes along the lines of  the second part of  the proof of Proposition 2. At 
first we shall show that the action of gl(ll, ~-I ) on ~ll't n' , which is induced by the inclusion 
Hi C DI,  is irreducible: Assume that there is a non-trivial subspace X C ~ ' ( "  invariant 
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under gl(lt, D-i). Let X ± denote its orthogonal complement in ( ~ " ~ ,  Ks). Consider the 
Howe subgroup S of  U,< ( I )  generated by the stabilizer 

S o : = { A  • DI : A ( X A X  ±) c ( X A X ± ) }  

of  X 7~ X ± w.r.t. Dr. By Hi c S c Dr,  either S = Ht or S = Dr. Moreover, by Witt's 
r?t [ 

theorem, prolongation to ~ t  yields an imbedding GL(X 7~ X - )  c__ So. Hence S = Di. 
Then, however, X A X ± = 0, since otherwise there was A • Di commuting with So but 
not with Dj.  As a consequence, 

(~'/", K~) = (x, K I ) e  (X ±, ~:~) 

for some Hermitian metrics K I , K~ over I~1. Then U~. (K~) × U~, (K~) generates a Howe 
subgroup of U~(1)  separating Hi and Dj (contradiction). Thus, gl(ll, II_l ) acts irreducibly 

~ m  t 
o n  ' ~ " i  • 

Now an argumentation similar to the one in the proof of  Proposition 2 shows that either 

D-i C ~ i  andl l  = m l , o r l ~ l  C ILl andml  = b l t , w h e r e b = d i m ~  I~t.  

It remains to check that these field extensions are involutive, in case IK = I~ this is 

obvious. In case I~ = ill on the other hand, one may assume I1~ C ~ and l~ = m~ 

(otherwise 1~2 C IL2 and m2 = ID. Then the inclusion is induced by the imbedding H~ C 
D~ and hence is involutive by (19). 

To proceed with th~ proof of  the proposition, we shall derive relations between K~ and 

Jr,  and between K2 and J,~ by exploiting the inclusion relations H~ C Di and D2 C H2, 
respectively. To this end we shall sort these relations into two classes and apply the following 
lemma: 

Lemma 7. Let L ~ be involutive fields such that O_ C M. Let J, K be metrics o f  dimension 

1, m over n_, ~ ,  respectively. Assume that U~ (J )  and U ~  ( K ) are Howe subgroups o fU ~ ( ! ). 

Consider the fol lowing two t3'pes o f  inclusion relations." 

(A) U0_(J) C U ~ ( K ) ,  where I = m, 

(B) U ~ ( K )  C Ua ( J ) ,  where I = m dim[ I~. 

Assume that the RHS in both cases is a direct successor o f  the LHS. Then M is a minimal 

involutive f ield extension o f  L Moreover, in case (A), K = J, whereas in case (B), 

{ AbmJ, [ L = ~ , [ ~ = C I ,  
= J, otherwise. 

Proof  Consider at first case (A). Here gl(l, n_) C gl(l, ~ )  and A J = A x for any A • 
gl(l, n_). Then j - I  K, as an element of  gl(l, ~ ) ,  commutes with gl(l, L). Hence 

K = J c e  for some ce • C~(~_). (33) 

Now consider the possible combinations of  n_ and 1~ separately: 

I. 0_ = ~, ~ = Cj,  Co: ot • C, hence K = J up to similarity of  both J and K. 
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2. L = C,., ~ = H: ot e C, hence again K = J ,  modulo similarity. 

3. L = ~, ~ = H: a 6 H, hence, up to similarity, K ~1~ = J ,  and K 121 = iJ.  However, 

both K (t> and K ~2~ are also metrics over C,.. So U~- (K ~ i~) generates a Howe subgroup 

of U~:( 1 ) separating U z (J )  and U~ (K). Thus, case 3 does not occur. 

Now turn to type (B). Denote b :=  dim0 ~ .  Inclusion (B) yields an imbedding gl(m, [~]) C 

gl(bm, 0_) which is equivalent to the standard one A ~ A', where A'is given by (12), (14), or 

(16), respectively (de p_ending on the values of IL and M). Then with J and K possibly modi- 

fied up to similarity, A h" = ~'J tbr any A e U ~ ( K  ). Similar to (A) one obtains, using (23). 

I J'~. otherwise, 
(34) 

for some c~ 6 ~ ' .  Finally, a discussion of  the possible combinations of I1 and t~ yields the 

assertion. 

By Lemma 7 and the following table, which is derived from Lemma 6, one obtains the 

relations between Ji and Ki, i = 1,2 which are asserted in the proposition. 

Relation between n_l and I~t Type of  Ht C Dt Type of D2 C H2 

Ill C ~ (A) (B) 

l~l C g-t (B) (A) 

[H] [Li C I~t (A) (A) 

l~l C Lt (B) (B) 

For the converse direction of the proposition assume that (D~, D2) obeys condition (a) 

or (b) of the proposition. A standard argument indicated in the proof of Proposition 2 shows 

that Hi, imbedded into U~( / )  as a subgroup of  some representative of DI, is Howe, and 

has direct successor Dl. Moreover, the centralizer /')2 of HI in U×(I )  has isomorphism 

class U.,.2(~) where ]2 is subject to condition (18). Since type 1 IRHDP are. in general, 

not uniquely determined by one of  their components it remains to check isomorphy of H~ 

and/')2, i.e. similarity of .~ and J2. 

Since (/42, Ht) is a direct successor of (D2, Di),  the inclusion D2 C /-)2 belongs to 

either type (A) or (B). In case (A), by (33), .~ = Jza, where u e C~12(U_2). However, both 

]2 and J2 have entries in [1-2, so that u is also an element of [L2. It follows that c~ e []-'~. and 

.~ and J2 are similar. 

This argument applies if at least one of  the inclusion relations Ht C Dt and D2 C H2 is 

of  type (A). If both are of  type (B) then • = H. One may assume that (n-i, t2) = (C,,  C, ) 

and ([~l, ~2 )  = (~, H) (otherwise one proves, from the beginning, that (H2. Hi ) is a direct 
successor of (D2, DL )). By (34), ]2 = J2~, where a ~ H' = ~. Thus ]2 and J2 are similar 
in this case, too. R 

Since Proposition 3 is not very explicit yet, it proves useful to derive a list of type I direct 

successors of  type 1 IRHDP from it (see Table 5). The following examples shall give an 
idea of how this may be done. We shall restrict our attention to O(p,  p). 
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Table 5 
Type I irreducible direct successors of type 1 IRHDP in Uk( l )  

U~ (1) IRHDP Direct successors Conditions 

O(p,q)  O(p l ,q l ) .  O(p2,q2) U(pI .q l ) .  U( I p2. / q2) P2. q2 even 
O(pl +qI .C) .O(p2 ,  C) Pl + q l  # I. P2 =q2 # 1 

Sp(nl ,~) .Sp(n2,  f f~ )  U(nl .n j ) .U(p2 ,  q2) P2+q2 =n2 
Sp(n i. C). Sp(/n2 . C) n 2 even 

O(nl. C), O(n2. C) O(nl. hi). O(p2, q2) P2 + q2 = n2 
Sp(n I , C), Sp(n2, C) Sp(2n I , R). Sp(n2. R) 
U(pl .q l ) ,U(p2 .q2)  Sp ( P l . q l ) , Sp ( I  p2, I q2) P2.q2 even 

O*(pl +ql) .O*(p2)  Pl + q l  # 1. P2 =q2 # I 
O(2pl. 2ql ). O(p2. q2) 
Sp(pl + ql, R), Sp(p2. •) P2 = q2 

Sp(pl ,q l ) ,Sp(p2 .  q2) U(2pl .2ql) .U(p2.  q2) 
O*(nl), O*(n2) U(nl. n i l  U(p2. q2) P2 + q2 = n2 

Sp(n. ~) O(pl ,q l ) ,Sp(n2 .  f f~ )  U(p l .q l ) .U(p2 ,q2)  p2 +q2 =n2  
O(pl + q I , C ) . S p ( / n 2 .  C7 n 2 even, Pl + q l  # I 

Sp(nl .~) ,O(p2 ,  q2) U(nl, nl), U(/p2.½q2) p2,q2 even 
Sp(ni,C). O(p2, C) P2 = q2 # 1 

O(nl. C), Sp(n2. C) O(nl, n I 7. Sp(n2. •) 
Sp(n 1,C),O012, C) Sp(2nl, R).O(p2.q2) P2 + q2 = n2 
U(pl ,q l ) .U(p2 ,q2)  SpfPl .qI) .O*(p2)  P2 =q2 :/: 1 

O*(pl +q l ) ,SP(½P2, /q2)  Pl + q l  :# l ,p2.q2 even 
O(2pl, 2ql). Sp( p2, R) p2 = q2 
Sp(pl + ql. R).O(p2.q2) 

Sp(pl. ql). O*(n2) U(2pl, 2ql). U(p2. q2) P2 + q2 = n2 
O*(n I), Sp(p2, q2) U(nl, n l ). U(p2, q2) P l + q l = n l 

Sp(p. q) O(pl .q l ) ,Sp(p2.q27 U(pl .q t ) .U(p2 .  q2) 
Sp(nl, ~), O*(n2) U(nl. n i l  U(p2, q2) P2 + q2 = n2 
U(p l .q l ) .U(p2 ,q2)  Sp(p l ,q l ) .O(p2 .q2)  

O(2pl. 2ql), Sp( I p2, / q2) P2, q2 even 
O*(p! +ql) ,Sp(p2 .  R) P2 =q2.  Pl + q l  #- I 
Sp(pl +qI .R) .O*(p27 P2 =q2  # 1 

Sp(p l ,q l ) ,O(p2 ,q2)  U ( 2 p l , 2 q l ) , U ( I p 2 . 1 q 2 )  p2,q2even 
O*(nlL Sp(n2. R) U(nl, n i), U(p2. q2) P2 + q2 = n2 

O*(n) O(pl,  ql). O*(n2) U(pl, ql). U(p2. q2) P2 + q2 = n2 
(n # 1) Sp(ni .R) .Sp(p2,q2)  U(nl .n l ) ,U(p2,  q2) 

U(p l .q l ) ,U(p2 .q2)  O*(pl +ql ) ,O(p2 .q2)  
O(2pl. 2ql 7. O*(p2) P2 = q2 # 1 
Sp(pl ,qj) .  Sp(p2. ff~) P2 = q2 
Sp(pI + q l . R ) , S P ( ½ P 2 . / q 2 )  p2.q2even 

O* (n I ), O(p2. q2) U(n l, n I ), U( / P2. I q2) - P2, q2 even 
Sp(pl .q l ) .Sp(n2,  R) U(2pl ,2ql) .U(p2,  q2) p2 +q2 =n2 

a NOTE. The conditions on the pairs in the 2nd and 3rd column to appear as IRHDP in U~(1) have 
already been displayed in Table 4, and henceforth are omitted here. 

E x a m p l e  5. To begin with, let us derive the type 1 irreducible direct successors  o f  the pair 

( O ( p l ,  q l ) ,  O(p2 ,  q2)). Here  fl-1 = R so that only case (a) can occur. As a consequence ,  

KI = J l .  
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Consider at first the involutive field extension Mt = Ct. Since Kt has flip factor ~ = 1, 

DI = O(pt  + qj, C). The relation between K2 and J2 is K~ = Ap2.q2J2. It can only 

have a solution if p2 = q2. In this case one may choose J2 = Ap2~-qz to obtain K2 = It,_, 

and D2 = O(p2, C). So the involutive field extension [~l = C t yields the direct successor 

(O(pt + q l .  C), O(p2, C)) of  the pair (O(pl .  qt ). O( p2. p2)). Furthermore, as an immediate 
consequence, 

( O ( n l . n l ) ,  O(pe,  n2 - p2)), {n2 <_ P2 < n~, 

are direct successors of  the pair (O(nt,  C), O(n2. C)), which are obtained by involutive 

field restriction. (Clearly, in case ~ = ~ it suffices to determine the type 1 direct successors 

obtained by field extension.) 

Next consider the involutive field extension MI = C,.. Here Di = U(pl .  ql). The 

equation K2 = J2 requires P2, q2 to be even. In this case one may put J2 = diag( 11,, - , - lq, ), 

thus obtaining D2 = U({p2,  ½q_~). Again, the field extension MI = C, also gives rise to 

the direct successor (O(2pt ,  2qt ), O(p2, q2)) of the pair (U(pt ,  ql ), U(p2, q2)), which is 

actually obtained by field restriction. 

Example 6. Now turn to the pair (Sp(nl. E), Sp(n2. ~)). For the involutive field extension 

~At --- Ci one finds that n2 must be even, and (DI .  D2) = (Sp(nt. C), SP(½n2. C)). For 

the involutive field extension ~ i  = C,,  on the other hand, one may choose for Jt the 

usual symplectic matrix. Then J~ has eigenvalues i and - i ,  each one with multiplicity 

hi. Thus Dt = U(n l . n t ) .  Moreover, given a decomposition n2 = P2 + q2, put K2 = 
diag(ilt,,. -ilu_~). Then K2 is a real symplectic metric, hence may serve as J2. Thus 1)2 = 

U(p2. q2), where P2 + q2 = n2. (Note that here it proves to be necessary to have J2 run 

through its similarity class.) 

6.4. Type 2 irreducible direct successors o f  ~.'pe 1 IRHDP 

Proposit ion 4. Assume that 1 is hyperbolic. 

(a) Let (HI,  H2) = (U0t(JI),UL_~(J2)) be a type 1 IRHDP o f  U[~(l). Then (Ht ,  H2) 

possesses a type 2 irreducible direct successor (Dr, D2) iff" J2 is hyperbolic. In this 

c a s ~ ' ,  

I (Dr. D2) ----- (GL(/t, El). GL(s/2,  0-2)). 

where It and 12 denote the dimension o f  Ji and J2. respectivel3: 

(b) Let (Ht,  H2) = (GL(/I, 0-1 ), GL(/2, n-2)) be a type 2 IRHDP of  U?~(/). Then the o'pe 

1 irreducible direct successors o f  ( Ht,  H2) are 

(UQ L (JI) ,  UL2 (J2)), 

where JI is hyperbolic o f  dimension 2It. 

Proof Obviously, assertion (b) is dual to (a) by taking the centralizer in U~(I) .  So one 

only has to prove (a). 
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To begin with, assume that (Di, D2) = (GL(ml, Mt ), GL(m2, 1~2)) is a type 2 direct 
successor of (Hi, H2). Then the unitary group 1-12 = ULt (J2) contains D2 as a non-trivial 
general linear subgroup. As a consequence, the Hermitian space (Q_~. J2) contains a non- 
zero isotropic [12-subspace X such that D2 ___ GL(X) ___ H2. Since there is non-central 
A ~ H2 commuting with GL(X), the Howe subgroup of U~(/)  generated by GL(X) (and 
hence GL(X) itself) coincides with D2. This implies [12 = ~2 and X ~ n_~'-'. In particular, 
n-i = ~[t. It follows Ii = mr, because otherwise GL(/I, kj) would generate a Howe 
subgroup of U~(I) separating Hi and Dr. By Ill2 = 2mira2, 12 = 2m2. Thus, X is an 
isotropic subspace of half dimension of (kf ,  J2). As a consequence, J2 is hyperbolic. 

Conversely, assume that J2 is hyperbolic. Then 12 is even and GL(~I2, ~-2) C H2. Since 
H2 is subject to condition (19), there is no general linear nor unitary group nor a product 
thereof separating GL(/12, [1-2) and H2. Hence GL(/12, [12), imbedded into UK(I) in this 

way, is Howe and generates the Howe dual pair (Dj, D2) = (GL(II, [11), GL(/12, 8-2)). 
Moreover, (Di, D2) is a direct successor of (Hi, H2). [] 

This concludes the discussion of the natural partial ordering relation of Howe dual pairs. 
In the next section we shall consider the set of reductive Howe dual pairs 7~(G) of a few 
standard groups G in some detail. 

7. Examples 

In the following, we shall use the direct successor relations established in Section 6 to 
draw, beginning with the center, Hasse diagrams of 7-/(U~ (1)). In these diagrams, in order to 
avoid arrows, we shall adopt the convention where the left vertex of a line is always less than 
the right one. Moreover, vertices are labeled by the first constituents of the corresponding 
Howe dual pairs only. The other constituent can be obtained by reflection at the vertical 
middle axis (this operation corresponds to taking the centralizer in U e. (I)). 

Example 7. At first, we shall discuss U(n), which is the most simple example. The IRHDP 
are (U(nl), U(n2)), where nln2 = ,1 (all of type 1). Since U(n) is defined by a scalar 
product on C','., any subspace is Hermitian. So Hermitian decompositions of C',' are given 
by sum decompositions n = n I + . . .  + n r. Hence Howe dual pairs are 

(U(n I) x - . . x U ( n ~ ) , U ( n ~ ) x . - .  ×U(nl) ) ,  where ni, n i = n .  
i=1 

Direct successors arise solely by splitting and inverse splitting (Proposition l). For the 
factors this yields the following two generating direct successor relations: 

(U(ni,),U(n~))_<(U(ni,) ×U(ni , ) ,U( l~)×U(m~)) .  where I i + m i = n  i, 
(U(I I) × U(ml), U(n/) × U(ni)) < (U(I I + mill U(ni)). 

As an example, we draw the Hasse diagrams of 7Y(U(2)) and 7-/(U(3)) in Fig. 1 as well 
as the one of 7-/(U(5)) in Fig. 2. 
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U(2) U(1) U(1) 2 U(I)  a U ( l ) x  1)(2) U(3) 

Fig. 1. Hasse diagrams of H(U(2))  (left) and 7-/(U(3)~ (right). 

U(I) O(1) 2 U(I) s U(I)2xU(2) U(I)a ×U(3) tJ( l )xU(4)  U(5) 

U{IIxU(2) 

Fig. 2. Hasse diagram of H(U(5) ). 

Co 

O - -  • m  i 
U(1) ~j(1) 2 U(l. l) 

Fig. 3. Hasse diagram of H(U(I .  I )). 

Remarks. 
1. At least H(U(2) )  and 7-/(U(3)) are well known. The first one, for instance, has been 

used in [2], and the second one in [4]. 

2. The sets of  Howe dual pairs of  U(n) and GL(n.  C) are isomorphic. In general, if G is a 
complex Lie group and H its compact real form then the Howe dual pairs of  H are the 

compact real forms of the Howe dual pairs of  G. 

Example  8. Next consider U(1, 1). Since the corresponding metric is hyperbolic, there is. 

besides the trivial IRHDP, a type 2 IRHDP, namely (GL( 1, C), GL( 1, C)). Moreover, there 

is a single Hermit•an decomposition of the metric: diag( 1, - 1 ) = ( 1 ) ~ ( 1 ). Let us draw the 
Hasse diagram. The center (U(1), U( 1, 1 )) has direct successors (U( 1 ), U( 1 ))2 (obtained 

by splitting), and (GL(I ,  C), GL(1, C)) (by virtue of Proposition 4). Both (U( 1 ), U(1)) × 
(U(1), U(1)) and (GL(1, C), GL( 1, C)) then have direct successor (U( 1, I ), U( 1 )). Thus, 

using the notation ~ .  :=  GL(1, 0~), the Hasse diagram is as shown in Fig. 3. 
Note that C. ,  if viewed as subgroup of the real Lie group U( 1, 1 ), is in fact the realification 

of the underlying complex group. So when complexifying again one obtains C~. This shows 
that the reductive Howe dual pair (C. ,  C.)  in U( 1, 1 ) is a real form of the reductive Howe 
dual pair (C2,, C~) in the complexification (GL(2. C), GL(2, C)). The other real form of 
this pair which is contained in 7-/(U( 1, 1)) is (U( 1 )2, U( 1 )2). 

Fig. 4 the reductive Howe dual pairs of  U(1,2) ,  derived in a similar way: 
Here there are two Howe subgroups of isomorphism class U( I)2. Thus, we see that a 

reductive Howe dual pair (Hi, H2) in a complex group G may split into several reductive 
Howe dual pairs in a real form of G not only because of the different real forms of ( Hi,  H2 ) 
but also because isomorphic real forms of different representatives of  (Hi ,  H2) may not be 
conjugate in the real form of G. 
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u(*) 2 u(i)xC, u(L*)xU(*) 

u(*) uo) 2 u(t) 3 u(~)xUO) uo,i) 

Fig. 4. Hasse diagram of 7[(U(2. 1)). 

so(2) 

O - - Q - - I  
z 2  z 2  2 o0) 

Fig. 5. Hasse diagram of 7-/(0(2)). 

Z2xSO(2) 

z2 z~ zS2 Z2xO(2) 0(3) 

Fig. 6. Hasse diagram of N(O(3)). 

Example  9. Now let us turn to the case of  real orthogonal groups O(n). Here the IRHDP are: 

(O(n ] ), O(n2)), where n ln2 = n, (U(n I ), U(n2)), where 2ntn2 = n, and (Sp(n I ), Sp(n2)), 
where 4n I n2 --- n (all type 1 ). Similar to Example 1, Hermitian decompositions are given 
by sum decompositions n = n I + . . .  + n r. So direct successors are obtained by splitting 

and its inverse, as well as involutive field extension and restriction. For 0(2) ,  for instance, 
one finds that the center (O(1), 0 (2 ) )  has direct successor (O(1), O(1)) 2 (by splitting) and 

(U(I) ,  U( I ) )  (by involutive field extension). Moreover, both inverse splitting of the first 
pair and field restriction of the second one yield the direct successor (0(2) ,  O(1)). Hence if 
we write Y72 instead of O( i )  and SO(2) instead of U(1) then the Hasse diagram is as shown 
in Fig. 5. 

Fig. 6 shows the Howe dual pairs of 0(3) .  Here the non-trivial Howe subgroups have the 
following meaning: 

- 7/2: Reflection at a plane and reflection therein, commuting with 
- 7/2 × 0(2) :  Reflection at a plane and 0(2)  therein, 

- 7/2 x SO(2): Reflection at a plane and rotations therein (commuting with itself), 
- 7/~: Reflections at three independent planes (commuting with itself, too). 

Example  10. Consider, as a slightly more challenging example, Lorentz group 0(3,  1 ) (see 
Fig. 7). (Due to the lack of space brackets are omitted here.) 

Example  11. Finally, let us consider Sp(2, R), as a simple example of a symplectic group. 
As we have stated in Section 1, the reductive Howe dual pairs of  symplectic groups are the 
ones relevant in representation theory, hence they are very well known. Now, here is their 
partial ordering (see Fig. 8.) 
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z~ z~ z~ zIxol.l z~×o2.1 

Z~xR. 

Fig. 7. Hasse diagram of 7-/(OI3. I )). 

u(l) 2 

Z2×Sp(1,R) 

Fig. 8. Hasse diagram of 7"/(Sp(2, •)1 (here Ht = 7/2 x ~ , .  H2 = Spl I. E) × E ,  ~. 

The last two examples illustrate, by the way, that the number of Howe dual pairs rapidly 
increases with increasing rank. For classical groups of higher rank it will be reasonable to 
use computer algebra to derive the natural partial ordering relation from direct successor 

relations, 

8. A remark  on seesaw pairs 

Knowledge of 7-/(G) yields a solution (not very elegant, though) to the classification prob- 
lem of so-called seesaw pairs [10]. These are pairs of reductive Howe dual pairs (Hi, H2), 

(Di, D2) in G with the property Hi C Dj. Clearly, the listing of these pairs, which we do 
not carry out here, amounts to an inspection of HI G). 
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The notion of  a seesaw pair has been introduced by Kudla [10] in connection with 

considerations about a unified view on identities between inner products of automorphic 

forms on different groups. In [10], the author gave some examples of seesaw pairs in 

Sp(n, N~) and expressed the wish to have a classification result. To our knowledge, however, 

such a result has not been published yet. Now, in view of the direct successor relations derived 

in Section 6 one can state that the examples given in [101, Section 2, cover all possible direct 

successor relations in 7-/(Sp(, •)). Thus, iterated application of these examples generates 

all seesaw pairs in Sp(n. ~).  

9. An application to Yang-Mills theory 

As an application of  the theory of RHDP, consider a pure gauge theory with compact 

internal symmetry G, defined on a principal bundle P over compact space-time X. As 

outlined in Section 1 we are interested in the singularity structure of the space of gauge 

orbits ,~4 (connections in P modulo gauge transformations). It is well known [9] that .M is 

homeomorphic to the orbit space of  a differentiable G-action on the manifold of  connections 

modulo pointed gauge transformations. Thus, one has the following facts which are standard 

for compact group actions [1]: There is a decomposition 

M = U M . ,  
a ~ - ,  I, 

(35) 

where Z p  denotes the set of orbit types of this action, and .h4,, is the subset of A4 consisting 

of orbits of  type a.  Usually, the decomposition (35) is called a stratification, with strata , ~ , .  

For any cr e Zt , ,  ~4~ is a smooth manifold. El, carries a natural partial ordering which 

is defined by inclusion modulo conjugacy (recall that the elements of  Z p  are conjugacy 

classes of subgroups of G). For any cr ~ Ep,  .M,~ is open and dense in the union 

U -'¥'~/t7 ' o 

o" ' ~ o "  

So one may view the strata M, , , ,  ~r' > or, as singularities in the union. Moreover, the 

information about which strata occur and how they are patched together is encoded in the 

partially ordered set ]Ep. Let us refer to  ~"]p as the set of  orbit types associated to the 
principal bundle P. 

In the following, assume that space-time is homeomorphic to the sphere S 4. From a 

general classification result [4] it follows that, in this case, Ep is the subset of  7-/(G) 

consisting of  those RHDP (Hi,  H2) for which 
(a) H2 has the same centralizer in G as its I-component, and 

(b) P may be reduced to H2. 
These conditions are due to the fact that any stabilizer subgroup of  the action we are 
considering are given as centralizer, in G, of  the holonomy group of  some connection 
in P. 
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Now specify G = SU(n).  In order to derive 7-/(SU(n)) from 7-/(U(n)) we apply the 

following simple rule: Let G c_ K be a subgroup. Then the RHDP of G are 

(G A Hr. G A H2). 

where (Hi .  H2) runs through all RHDP of K which satisfy 

G ~ C K ( H i ) = G A C K ( G ~ H i ) .  i - --  1.2. 

Using the notation SHi : =  S U ( n )  f-'l Hi w e  find H(SU(n) )  = 'H(U(n)),  with elements 

( S H i ,  SH2) instead of  (Hi .  H2). One checks that all these RHDP obey condition (a) (al- 

though the subgroups SH2 are not necessarily connected). 

Next let us discuss condition (b). In general, principal bundles over S 4, with structure 

group a compact Lie group G, are determined by homotopy classes of transition functions 

S 3 ~ G,  and hence are classified by the elements of the homotopy group ~3(G).  In 

particular, since rr~(U(n)) = 7r3(SU(n)) = Y (provided n > 2). principal bundles with 

structure group U(n) or SU(n) are classified by an integer k (which coincides with the 

instanton number). Clearly, a G-bundle of class ot 6 rr.~(G) is reducible to a subgroup 

j • H ~ G iff there is a transition function f ' S 3 ~ G of c l a s s a  and a transition 

func t iong  • S 3 ~ H such that f = j o g .  Thus. the bundle is reducible to H i f f ~  is 

contained in the image of the induced homomorphism j ,  • ,'r3(H) --, rr3(G). 

We shall calculate rr3(SH2) and the corresponding homomorphism j ,  • z~ (SH: )  ---, 2 

for the RHDP of SU(n). Assume 

Hi = U ( n ] )  x . . .  x U ( n i ) ,  i =  1,2, 

where Y~i= t i J . . . . .  A '  ' n in 2 = n. T h e n j  " H2 --* U(n) maps (A i ) 6 H2 on a block diagonal 

matrix, with blocks diag(A i . . . . .  A))  ( n  I entries), .j = 1 . . . . .  r. Moreover, 

SH2 = {(A i . . . . .  A")  E H2 • d e t j ( A  t . . . . .  A ~) = I}. 

Consider the Lie group homomorphism 

U I 1 ) x S H 2 - - +  H2, .  (e ~ ' ~ . A ) ~ e ' ~ A .  

This homomorphism is surjective and has discrete kernel N. Hence the exact homotopy 

sequence of the fibration N ~ U( I )  × SH2 --~ H2 yields 

zr3(SH2) = ~ 3 ( H 2 ) .  

As a consequence, over space- t ime S 4, the set of orbit types associated to an SU(n )-bundle 

of class k 6 77 coincides with the one associated to a U(n)-bundle of  the same class. Denote 

this set by Z~. 

It is easily seen that the homomorphism induced by j : H2 ~ U(n) is 

±- 
j ,  • zr3(H2) ---+ .7/, (kl . . . . .  k,.) w-~ n-lk i. (36) 

./=1 
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(Here ki is zero if n~ -- 1 and an arbitrary integer otherwise.) Let g(Hi, H2) denote 

the greatest common divisor of those numbers n~, j = 1 . . . . .  r, lbr which n~ # 1. Put 

g(Hi. H2) = 0 ifn j = 1 for all j .  Then (36) yields 

imfl  = g(Ht, H2) •/7. 

Thus, we have the following result: 

E~! = {(HI, H2) E 7"~(U(n)) : g(Hi, H2) divides k}. (37) 

As an example, let us consider E~. In the Hasse diagram of 7"/(U(3)) we indicate g(Ht, H2) 

by the number of circles surrounding the vertex of (Hi, H2): 

u( l? u ( 3 )  u(])xu(2) u(3) 
- ~ )  • - -  • - -  • ( 3 8 )  

Thus, the Hasse diagram of E~ ~ consists of all vertices in case k = 0 (recall that all integers 
divide 0), and of the vertices surrounded by a circle in case k :fi 0, respectively. Next 

replace (Hi. H2) by (SHI, SH2) in (38). Explicitly, replace (U(I). U(3)) by (Y3, SU(3)), 
(U(I) e. U(I) × U(2)) by (U(I), U(2)), imbedded as 

{dlag(~ - , ~ . ~ ) ' ~ U ( 1 ) }  and A 

respectively, and (U(I) 3, U(I) 3) by (U(I) 2, U(1) 2) (the maximal toms), as well as the first 

two pairs in the opposite order. Now we can interpret I~ 3 as the set of strata of the orbit 

space of a pure gauge theory defined on a SU(3)-bundle of class k over $4: The orbit type 

(Y3, U(3)) corresponds to the generic stratum. If the bundle is trivial then there are four 

additional strata, building up singularities of consecutively increasing degree. When passing 
to non-trivial bundles, though, there survives only the lowest non-generic stratum. 

Analogously, for ~(U(5))  we find 

u(•) UO) 2 UCI) + U(1)2xU(2) tJ(1)2 x U(3) tJ(+)xU(4) uf,s) 
- - ® - - ® - - ® - - ® - - ® - -  o - -  • 

U ( t ): U( 1 )3 " ~  U ~ ( 1 ) x  U (2) 2 U{2) x U (3) 

uo)xU(2) 

So the Hasse diagram of Z l consists either of all vertices (if k = 0), of the vertices 
surrounded by one circle (if k is odd), or of the vertices surrounded by one or two circles (if 
k # O, even). Again, by replacing (Hi, H2) by (SHI, SH2) one obtains the corresponding 
orbit types for SU(5). Note that in case k # 0, even, there are two maximal orbit types (or 
two maximally singular strata, if interpreted as such). By now, we do not know the physical 
significance of this fact. (Features like that we are going to study in the future.) 
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Finally, let us discuss which  values g(Ht ,  H2) may take in ~ ( U ( n ) ) .  Clearly, 

2g(Hi ,  H2) < n. 

Conversely,  if  there is given a posit ive integer m obeying 2m < n then 

( H I . H 2 ) = ( U ( I )  I x U(m) .  U ( I )  / x U(2)) .  / = n -  2m, 

is an R D H P  in U(n) ,  and m = g(Hi ,  H2). Thus, 

g I H I . H 2 ) =  1,2  . . . . .  [~nl .  

(Here [ 'l  denotes  the integer part.) Hence  {Z~ ~ : k 6 7/} splits into i somorphism classes 

labeled by those posit ive integers k which are a least c o m m o n  mult iple  of  some subset of  

{1 ,2  . . . . .  [~n l} .  

To conclude,  we remark that the case of  U(n)  (or SU(n) )  bundles over  space - t ime  S ~ is the 

simplest  one. As a rule, I: p will  be more interesting for other  classical Lie groups.  Moreover .  

~, becomes  more sensit ive to the topology of  P when passing to more compl ica ted  space-- 

times. In particular, the sets o f  orbit  types associated to U{n) and SU(n) -bund les  may 

not coincide  any more.  Since this subject we are still working on, precise results will bc 

publ ished later. 
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